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Abstract
We present Monte Carlo simulations of a three-state lattice gas, half-filled with
two types of particles which attract one another, irrespective of their identities.
A bias drives the two particle species in opposite directions, establishing and
maintaining a non-equilibrium steady state. We map out the phase diagram at
fixed bias, as a function of temperature and fraction of the second species. As
the temperature is lowered, a continuous transition occurs, from a disordered
homogeneous phase into two distinct strip-like ordered phases. Which of the
latter is selected depends on the admixture of the second species. A first-order
line separates the two ordered states at lower temperatures, emerging from the
continuous line at a non-equilibrium bicritical point. For intermediate fraction
of the second species, all three phases can be observed.

PACS numbers: 05.10.Ln, 05.50+q, 64.60.Cn

1. Introduction

For systems in thermal equilibrium, the theoretical framework is firmly laid, resting on the work
of Boltzmann and Gibbs over a hundred years ago. In particular, the study of simple equilibrium
models has a long and illustrious history, as reduction in complexity facilitates the development
of theoretical techniques and intuition. In contrast, for systems far from equilibrium there
exists no general theoretical framework, and the field remains in an undeveloped state. The
strategy of investigating simple models motivates our Monte Carlo study of a driven diffusive
system far from equilibrium. A modification of the Ising model, our system departs from well
travelled ground in equilibrium statistical mechanics. Our goal is to develop some intuition
about systems far from equilibrium while extending earlier work in the field [1].

Almost twenty years ago, Katz, Lebowitz and Spohn (KLS) [2] introduced a generalization
of the Ising lattice gas [3], motivated by the physics of fast ionic conductors [4]: a bias E is
applied along a specified lattice axis, driving the particles much like an electric field would drive
positive charges. With conserved density and periodic boundary conditions, the system settles
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into a non-equilibrium steady state, characterized by a uniform particle current. Similar to the
equilibrium Ising model, the KLS phase space consists of a high-temperature disordered phase
and a low-temperature phase-separated phase, characterized by a particle-rich strip parallel
to the field direction. At half-filling, the transition remains continuous, but shifts to a higher
temperature Tc(E). Remarkably, the transition belongs to a novel universality class [5–7],
distinct from the Ising class. One of its key signals is strong anisotropy: wave vectors scale
as k‖ ∼ k1+�

⊥ , with k‖ in the bias direction and � = 2 in dimension d = 2. Away from
Tc(E), a conserved order parameter, coupled with the lifting of the detailed balance constraint,
generates power law decays of correlations at all T > Tc [8].

A natural generalization [9] of the KLS model introduces a second, negatively ‘charged’
particle species, driven in the opposite direction by the bias. In the high-T , high-E limit
where interparticle interactions can be neglected, the system has a line of phase transitions,
separating a disordered phase from an inhomogeneous ordered phase. In the ordered phase,
which prevails at high density, particles of opposite charge block each other’s progress, forming
a charge-segregated strip transverse to the field. Both first- and second-order transitions can
occur [10, 11]. The blocking transition persists in systems carrying nonzero charge, giving
rise to slowly drifting strips [12, 13]. Slow and fast cars, observed in a co-moving frame,
offer a good analogy: a blocking transition (traffic jam) occurs when vehicles are sufficiently
dense [14]. We refer to this noninteracting system as the ‘two-species model’ for short.

It is natural to wonder what will happen if we lift the high-field, high-temperature
constraint. Now the particles should ‘feel’ the Ising interaction over some range of
temperatures, and all three phases (disorder, parallel and transverse strips) may exist in phase
space. Several possibilities emerge immediately. First, we can explore the stability of the KLS
universality class by replacing a few positive particles by negative ones. Eventually, however,
a blocking transition will occur when a critical charge is exceeded. Similarly, the two-species
limit can be probed by taking the strength of interparticle interactions to zero. In this letter,
we limit ourselves to establishing the presence of all three phases: the disordered phase, the
transverse strip associated with the blocking transition, and the parallel strip associated with
KLS order. Details will be deferred to a future publication [15]. In the next section, we will
introduce the model specifications and our choice of order parameters, to set the stage for our
Monte Carlo results. We conclude with some open questions.

2. The microscopic model and order parameters

The configurations of our model are specified by a set of occupation variables, {s(r)}, where
r ≡ (x, y) labels a site on a fully periodic square lattice of dimensions Lx × Ly , and each
s(r) can take the values +1, −1 or 0 for a positive particle, negative particle or hole. The
drive E points in the positive y-direction. We also introduce the variable n(r) ≡ |s(r)| to
distinguish particles (of either species) from holes. For later reference, we define the mass
density m = 1

LxLy

∑
r n(r) and the charge density q = 1

LxLy

∑
r s(r). To ensure access

to the KLS critical point, we study systems with m = 0.5, i.e., half-filled lattices. The
particles are endowed with attractive nearest-neighbor interactions of strength J > 0, which
are independent of charge and controlled by the usual Ising Hamiltonian

H = −4J
∑
〈r,r′〉

n(r) n(r′). (1)

We may set J = 1 without losing any interesting physics. A given configuration evolves
in time as follows. A nearest-neighbor bond is chosen at random, and, if occupied
by a particle–hole pair, its contents are exchanged according to the Metropolis [16] rate
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min{1, exp[−(�H − δy E s(r))/T ]}. Here, the second term models the effect of the drive: if
the particle, of charge s, is initially located at r, δy is the change in its y-coordinate due to the
jump. Thus, positive (negative) charges jump preferentially along (against) the field direction.
The parameter T (‘temperature’) models the coupling to a thermal bath. Particle–particle (i.e.,
charge) exchanges are not allowed.

We note, first, that this dynamics is diffusive, i.e., it conserves particle and charge densities.
Second, even though the drive mimics an electrostatic potential, the boundary conditions
prohibit the existence of a global Hamiltonian. As a consequence, the system settles into a
generic nonequilibrium steady state. Third, we briefly review the different limits of this model:
for q = m = 0.5, we obtain the KLS model, while J/T → 0 at finite E/T is the two-species
case. Of course, the equilibrium Ising model is recovered for E = 0, q = 0.5. Thus, the
natural control parameters for our study are temperature T (measured in units of the Onsager
value), the drive E (measured in units of J ) and the system charge q.

Due to the conservation laws, the ordered phases are spatially inhomogeneous.
Anticipating strip-like ordered domains, we select an order parameter sensitive to such
structures, i.e., the equal-time structure factor associated with the particle distribution,

〈
�(mx, my)

〉 ≡
〈∣∣∣∣∣ π

LxLy

∑
x,y

n(x, y) exp

[
2π i

(
mxx

Lx

+
myy

Ly

)]∣∣∣∣∣
2〉

. (2)

Here, 〈·〉 denotes a configurational average, and the integers mx, my index the wave vector.
Strips transverse and parallel to the drive are easily identified by considering the smallest
nonzero wavevectors in the x- and y-directions, respectively. Specifically, a perfect strip
along the y-direction corresponds to 〈�(1, 0)〉 = 1 while a random configuration gives
〈�〉 = O( 1

LxLy
). By disregarding the phase, the fluctuations in the strip position do not

interfere with the averaging procedure. While other choices of order parameter are of course
possible, we prefer 〈�(mx, my)〉 since both its high- and low-temperature limits are exactly
known. All simulations are run on 40×40 lattices, starting from random initial configurations
except where noted. One Monte Carlo step (MCS) is defined as 2LxLy update attempts. When
averaging, the first 2 × 105 MCS are discarded to let the system reach the steady state, and
measurements are taken every 200 MCS for the next 8 × 105 MCS.

3. Monte Carlo results

The parameter space for our model is spanned by T , E and q. In order to establish the presence
of all three phases, E must be chosen judiciously. To date, the driven Ising model has mostly
been studied at infinite drive, where jumps against E are completely suppressed, in order to
maximize its nonequilibrium characteristics. This choice, however, renders our two-species
system non-ergodic: any configuration in which the minority species forms a blockage, even
if it is just a single row spanning the system in the transverse direction, will never break up,
regardless of whether such a configuration is stable, metastable, or just a random fluctuation.
Thus, a much smaller E must be selected if we wish to observe transitions from transverse to
parallel strips, with reasonable decay times. Exploratory runs show E = 2 to be a good choice.
The remaining parameter space is now two dimensional with axes (T , q), and we map out the
phase diagram in this plane. We first consider q = 0.5, corresponding to zero negative charges,
at finite E. On this line, we find a single continuous transition, at Tc(2) � 1.15, to the KLS
ordered state, i.e., a single strip aligned with E. A detailed anisotropic finite-size scaling [7]
study, to be published elsewhere [15], indicates that this transition is in the usual KLS class,
consistent with field-theoretic predictions [5]. Next, we turn to a smaller charge, q = 0.425,



L216 Letter to the Editor

T = 1.00

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000

T=1.80

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000

T=0.80

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000

T=0.90

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000

Figure 1. Time traces for �(0, 1) (�) and �(1, 0) (•) versuss time (in units of 400 MCS), at four
different temperatures for q = 0.425.

which corresponds to exactly 60 negative particles, i.e., 1.5 rows, on a half-filled 40 × 40
lattice. Figure 1 shows time traces of �(1, 0) and �(0, 1) at four different temperatures, all
starting from a random initial configuration. At high temperatures, the system is disordered,
with both modes essentially zero. As T is lowered to T � 1.80, the blocking transition occurs
first, evidenced by �(0, 1) emerging from the noise. At T = 1.00, the system settles quickly
into a well developed transverse strip with a strong nonzero signal in �(0, 1). Lowering T

further to T = 0.90, we observe signatures of metastability: the corresponding time trace
initially develops a large �(1, 0) which decays after about 2.5 × 105 MCS and reorganizes
itself into a transverse strip, signalled by �(0, 1). Finally, a well developed parallel strip is
observed at T = 0.80. Thus, we establish a sequence of two transitions at q = 0.425, with
the blocking transition occuring first as the temperature is lowered.

The results of our simulation study are summarized in Figure 2 which shows the phase
diagram in the q–T plane, for a 40 × 40 system. As q decreases from 0.5 to 0, the number
of negatively charged particles increases from 0 to 400. To locate and distinguish continuous
and first-order transitions, we monitor time traces of the order parameters and extract their
fluctuations, i.e., 〈�2(1, 0)〉 − 〈�(1, 0)〉2 and 〈�2(0, 1)〉 − 〈�(0, 1)〉2. Crossing a continuous
transition, the appropriate order parameter rises smoothly from the noise, accompanied by a
peak in its fluctuations. For example, at q = 0.425, the fluctuations of the (0, 1) mode peak at
T = 1.80±0.05, whence we use this value to (approximately) locate the transition. Proceeding
in this manner, we find two lines of continuous transitions, separating the disordered phase
from two different ordered phases: for 0.50 � q � 0.46, the disordered (D) phase becomes
unstable with respect to a parallel strip (PS) as in the KLS model, while for q � 0.45 the
system orders into the transverse strip (TS) associated with the blocking transition. However,
the parallel strip re-emerges, as the true low-temperature configuration: a line of first-order
transitions begins at q � 0.46, T � 1.1, extending to smaller q’s and T ’s. This line separates
two ordered phases: transverse strips which persist at higher temperatures, and parallel strips
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Figure 2. Phase diagram for a 40 × 40 system in the q, T plane, for E = 2. The D–PS (�) and
D–TS (�) transition lines are second order. The PS and TS phases are separated by first-order
transitions (◦). The junction of the three lines marks the bicritical point.

at lower temperatures. Near this line, time traces of the order parameters show metastability
and hysteresis. To separate stable from metastable configurations (to the accuracy of our
simulations), we analysed long runs up to 2.4 × 106 MCS, starting from different initial
configurations. For q = 0.425, a sharp transition is easily located at T = 0.84 ± 0.01. This
becomes more difficult as q increases since the continuous and first-order lines approach one
another and the first-order character of the lower transition weakens. For smaller q, the first-
order transition shifts to such low temperatures that metastable states are effectively frozen on
the time scales of our simulations.

Provided our qualitative picture is confirmed by further tests, the junction of the first-
and second-order lines, at q � 0.46, T � 1.1, is a non-equilibrium bicritical point. In fact,
the system shows markedly different behavior at q = 0.45 and q = 0.46. At q = 0.46 the
order parameter signalling transverse strips, 〈�(0, 1)〉, reaches a maximum value of just 0.09
at T = 1.2, in stark contrast to a maximum value of 0.33 at T = 1.1 if q = 0.45. Moreover,
the q = 0.45 system clearly shows a lower transition with signs of metastability, while none is
observed at q = 0.46. While it is quite remarkable that changing the sign of just eight particles
makes such a difference, we emphasize that q = 0.45 corresponds to precisely one full row of
negative particles in a 40 × 40 system while q = 0.46 results only in a partially filled row (32
negative charges).

4. Conclusions

We have simulated a lattice gas, consisting of two oppositely charged particle species and holes
subject to an ‘electric’ field. The particles attract one another, independent of charge. This
model interpolates between two well studied limits: the KLS model [2] which has just a single
species, and the high-field, high-temperature version of this model [9] where the interactions are
irrelevant. Both limits exhibit order–disorder transitions, characterized, however, by different
ordered phases: a density-segregated strip parallel to the drive in the KLS limit, and a density-
and charge-segregated strip transverse to E for the two-species limit. Here, we have mapped
out the phase diagram for an intermediate value of the drive, where both ordered phases are
observed in different regions of parameter space. Lines of first- and second-order transitions,
joined at a bicritical point, demarcate their stability domains.

We conclude with some remarks on work in progress [15] and open questions. Clearly,
we have explored only a limited portion of the huge parameter space. Moreover, a systematic
finite-size scaling analysis is needed to obtain a better estimate of the transition lines and to



L218 Letter to the Editor

extract the critical properties of the continuous transitions. Preliminary studies show that the
mean features of our phase diagram are independent of system size. Analytic work, ranging
from mean-field to full-fledged renormalized field theory, should provide further insights. A
particularly intriguing question is how q and E should scale with the lattice dimensions. If
both are held fixed when performing the standard finite-size analysis for the KLS model,
the blocking transition will eventually supersede the KLS transition: a fixed charge density
corresponding to a single row in a square system becomes several rows thick in a ‘long skinny’
system. Clearly, much remains to be explored before this rich system is understood in detail.

We thank R K P Zia, R J Astalos and U C Täuber for helpful discussions. Partial support from
the National Science Foundation through DMR-0088451 is gratefully acknowledged.
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